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Abstract

In the past, object-oriented language designers and program-

mers have been forced to choose between pure message pass-

ing and performance. Last year, our SELF system achieved

close to half the speed of optimized C but suffered from

impractically long compile times. Two new optimization

techniques, deferred compilation of uncommon cases and

non-backtracking splitting using path objects, have improved

compilation speed by more than an order of magnitude. SELF

now compiles about as fast as an optimizing C compiler and

runs at over half the speed of optimized C. This new level of

performance may make pure object-oriented languages prac-

tical.

1 Introduction

In the past, object-oriented language designers and pro-

grammers have been forced to choose between purity

and performance. In a pure object-oriented language, all

computation, even low-level operations like variable

accessing, arithmetic, and array indexing, is performed

by sending messages to objects. Although a message

send may cost only one indirection more than a proce-

dure call, a message send may cost much more than an

inlined procedure call. Unlike a statically-bound proce-

dure call, a message send refers to no single target

method, and so the compiler cannot simply expand its

destination in-line. Pure object-oriented languages thus

exhibit high call frequencies which interfere with good

performance.

* This work has been generously supported by an IBM graduate stu-
dent fellowship, an NSF Presidential Young Investigator award, and
grants from Sun, IBM, Apple, Cray, Tandem, NCR, TI, and DEC.

** Authors’ present addresses: Craig Chambers, Department of
Computer Science and Engineering, Sieg Hall, FR-35, University of
Washington, Seattle, WA 98195; David Ungar, Sun Laboratories,
MS 29-116, 2550 Garcia Ave., Mountain View, CA 94043.

For example, the fastest commercial implementation of

a pure dynamically-typed object-oriented language,

ParcPlace Smalltalk-80* [GR83], runs a set of small C-

style benchmarks at only 10% the speed of optimized C;

this implementation contains techniques developed by

Deutsch and Schiffman [DS84] that are widely consid-

ered to be the state of the art in software techniques for

building fast implementations of pure object-oriented

languages.

Even statically-typed (but pure) object-oriented lan-

guages like Trellis/Owl [SCW85, SCB+86], Eiffel

[Mey86, Mey88], and Emerald [BHJL86, Hut87] must

overcome the overhead of dynamically-dispatched mes-

sage passing.** Static typing allows the compiler to

check that an object will understand every message sent

to it and perhaps to use a somewhat faster dispatching

mechanism to implement messages. However, because

an instance of a subclass can always be substituted for

an instance of a superclass, and because subclasses can

provide alternate overriding method implementations,

static type-checking cannot determine in general the

single target method invoked by a message. Since static

typing alone does not enable static binding and inlining

of messages, it cannot significantly reduce the overhead

of message passing.

Hybrid object-oriented languages such as

C++ [Str86, ES90] and CLOS [BDG+88] short-circuit

the overhead (and consequently the benefits) of passing

messages by including statically-bound procedure calls

and primitive, non-object-oriented data types for simple

things like numbers, arrays, and cons cells. These data

types are accessed via built-in operators or procedure

calls that are automatically inlined by the compiler to

achieve good performance. However, it is only within

pure object-oriented languages that the benefits of

* Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

** Even these “pure” languages restrict common built-in types like
integer and bool to be non-object-oriented to get better perfor-
mance.
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minimize start-up time after a programming change, the

sluggishness of the compiler sapped the overall perfor-

mance of our system. Users could not tolerate minute-

long pauses for compilation during interactive use.

This paper reports on work we have done this last year

to re-engineer our techniques. New type analysis algo-

rithms replace the expensive backtracking approach of

the previous SELF compiler with path data structures to

extract the same type information at a much lower cost.

Additionally, the new system defers compilation of

uncommon cases until they actually occur at run-time.

As a result the compilation time of our optimizing SELF

compiler has improved from a few minutes per bench-

mark to a few seconds, and we have been able to com-

pile all our SELF code with full optimization. With this

improvement, compile times for SELF now compete

with those for optimized C. Gains in compilation speed

are usually purchased at the expense of run-time perfor-

mance, but the run-time performance of our new system

has actually improved, to over 50% the speed of opti-

mized C. Now that our optimization techniques have

entered the realm of practicality, we hope that language

designers and users can safely adopt a pure object-ori-

ented model with message passing as the most basic

mechanism for computation and rely on implementa-

tion techniques like ours to provide a level of perfor-

mance, both run-time and compile-time, competitive

with hybrid object-oriented languages and even tradi-

tional languages.

Section 2 presents an overview of the structure of the

SELF compiler. Section 3 illustrates many of our new

techniques using an excerpt from the bubblesort
benchmark. Section 4 completes the discussion of our

new techniques by extending the example to include a

loop. Section 5 relates current run-time performance,

compile-time performance, and compiled-code space

costs for the current SELF compiler, the previous SELF

compiler, the ParcPlace Smalltalk-80 system, the

ORBIT optimizing compiler for T (a dialect of Scheme),

and optimized C. Section 6 describes the status of our

SELF implementation with hints of current and future

work. Section 7 completes the paper with a brief discus-

sion of related work.

object-oriented programming universally accrue for all

code in a program. This fundamental trade-off between

purity and performance has prevented the many pro-

grammers who need high performance from fully

enjoying the benefits of object-oriented programming.

Over the last few years we have been working on bridg-

ing the gap between the performance of traditional lan-

guages and the performance of pure object-oriented lan-

guages. We are developing new implementation tech-

niques and compiler optimizations for our

implementation of SELF [US87], a pure dynamically-

typed object-oriented language even harder to compile

efficiently than Smalltalk-80. The following chart sum-

marizes our progress to date, compared against opti-

mized C (faster execution speed is higher on the graph,

and faster compilation speed is farther to the right on the

graph):

In 1989, we presented early results [CU89, CUL89]

showing how our SELF system ran the same set of small

C-style benchmarks at 20% the speed of optimized C,

twice as fast as the ParcPlace Smalltalk-80 system. In

1990 we described more recent work [CU90] in which

our SELF system ran the same benchmarks at 40% the

speed of optimized C, another factor of two improve-

ment over the early SELF system and a factor of four

faster than ParcPlace Smalltalk-80. Unfortunately, the

new techniques were slow: compiling a single bench-

mark took from tens to hundreds of seconds, and one

technique, loop splitting, took an exponential amount of

time and space and so could only be applied to the

smaller benchmarks. Since our compiler runs dynami-

cally at run-time to conserve compiled code space and
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2 Overall Structure of the SELF Compiler

Before explaining our new advances in type analysis

and compilation, it is necessary to review the matrix in

which they are embedded. Readers who are familiar

with our past work may wish to skip this section.

2.1 Dynamic Compilation

The SELF system employs dynamic compilation to

obtain better run-time performance than an interpreter

while reducing compile-time and code-space costs over

a conventional static compiler; dynamic compilation in

SELF is similar to dynamic translation in the Deutsch-

Schiffman Smalltalk-80 system [DS84]. When a pro-

grammer types in a program, a parser (corresponding to

the Deutsch-Schiffman compiler) translates it into a

simple byte-coded intermediate representation. Later,

when the program is invoked, a compiler (correspond-

ing to the Deutsch-Schiffman translator) compiles and

optimizes the program, caching the resulting object

code for future use.

2.2 Customization

Dynamic compilation offers new opportunities for effi-

cient implementation not available in a traditional static

compilation world. Although many classes* may inherit

the same method, the SELF compiler compiles a sepa-

rate, customized copy for each of them. In each copy,

there is but a single class for self, and this knowledge

* Since SELF has no classes, our implementation introduces maps
transparently to the user to provide similar information and space
efficiency as classes [CUL89]. Thus in our system customization is
based on the internal map of the receiver rather than its class. We
will continue to use the class terminology in the rest of the paper for
pedagogical reasons.

SELF Source Code parser

when a method
compiler

Compiled Method

compiled method cache

SELF Objects and Methods

SELF heap
is called at run-time

not in the cache

(machine code)

keyboard or disk file

allows the compiler to replace all dynamically-bound

messages sent to self (such messages are a large frac-

tion of the messages sent in SELF programs) with stati-

cally-bound procedure calls. Once a message has been

statically-bound, more conventional techniques like

inline substitution (inlining) can be used to reduce the

overhead of the message even more. If the target

method of the message is short (as is frequently the case

in pure object-oriented languages), static binding and

inlining can speed the message by an order of magni-

tude or more, especially if the inlined method can be

optimized further in the context of the call.

2.3 Types in the SELF Compiler

Customization provides type information that enables

compile-time message lookup for all sends to self. To

perform similar optimizations for messages sent to

other receivers, the SELF compiler performs type anal-

ysis to infer the exact class of message receivers. Like

traditional data flow analysis, SELF’s type analysis

propagates the type binding information through the

control flow graph. Unlike traditional data flow analy-

sis, SELF’s type analysis is interleaved with other tech-

niques like message inlining and message splitting

(described in section  3.3). These other techniques trans-

form the control flow graph while the type analysis is

labeling it. The need to label and transform the graph

simultaneously empowers and complicates our tech-

niques.

A type in the compiler specifies a non-empty set of val-

ues. A variable of a particular type at a particular point

in the program is guaranteed to contain only values in

the type’s set of values at run-time at that point. The fol-

lowing table shows the different kinds of types used in

the SELF compiler, chosen to support the optimizations.

name set description static info source

constant singleton set compile-time literals, constant slots,
constant true and false type tests

integer set of sequential integer ranges arithmetic and comparison
subrange integer values primitives

class set of all values format and self, results of some
with same class inheritance primitives, integer type tests

unknown set of all values none data slots,
message results,
up-level assignments

union set union one of results of some primitives
of types several types

difference set difference exclude failed type tests
of types certain types
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3 Type Analysis

To compute the static type information necessary for

optimization, the compiler builds a mapping from vari-

able names to types at each point in the program (i.e.

between every node in the control flow graph). We will

illustrate this process with a code fragment taken from

the inner loop of the bubblesort benchmark that

exchanges two elements in a vector (or any other collec-

tion that responds to at: and at:Put:):

Each node in the control flow graph may alter the type

bindings as type information propagates across the

node. For example, a declaration of a local variable such

as aTemp adds a new binding to the type mapping.

Since local variables in SELF are always initialized to

compile-time constants, each binding will initially be to

some constant type. In our example, there is one local,

aTemp, initialized to nil. 

3.1 Type Prediction

Next the compiler must generate code for the first at:
message. Since the receiver is aCol, and since the type

of aCol is unknown, the compiler cannot statically

determine the target method. However, the compiler

predicts that there is a good enough chance that the

receiver of at: is a vector to make it worthwhile to

optimize this case. So the compiler inserts a type test for

aCol before compiling the at: message.

| aTemp |
. . .
aTemp: (aCol at: i).
aCol at: i Put: (aCol at: j).
aCol at: j Put: aTemp.

| aTemp |

aTemp: nil

aCol: unknown
i: unknown
j: unknown

aCol vector?

aCol: unknown

aCol: unknown - vectoraCol: vector

Now that two cases have been separated, the compiler is

free to lookup and inline at: for the vector case along

the left branch; it must still generate a full message send

for the non-vector case. The inlined at: primitive

includes a type check and a bounds check for the sub-

script argument, which result in two more branches.

3.2 Deferred Compilation

In the code generated for vectors, there are two branches

that lead to primitive failure: one for a non-integer sub-

script argument and another for an out-of-bounds sub-

script argument. Just as the compiler is imbued with the

knowledge that the receiver of at: is likely to be a vec-

tor, it is also informed that primitive failures are

unlikely. In fact, they are so rare that it is not even

worthwhile to spend time compiling code for them.*

Accordingly, the SELF compiler defers compiling code

for these uncommon cases, generating instead a stub

that invokes the compiler. This optimization is new with

the current SELF compiler.

Deferred compilation of uncommon cases dramatically

reduces the time required for type analysis and con-

serves much compiled code space. In addition, deferred

compilation of uncommon cases speeds and simplifies

* We would like to gratefully acknowledge John Maloney for point-
ing this out to us.

i: unknown - int
aTemp ← send at: i to aColi integer?

i in [0, sizeof(aCol))?

aTemp ← load col[i]

i: integer

i: [0, sizeof(aCol))

aTemp: unknown

aTemp: unknown

aCol vector?

aCol: unknown

aCol: unknown - vectoraCol: vector

aTemp ← send at: i to aColi integer?

i in [0, sizeof(aCol))?

aTemp ← load col[i]

i: integer

i: [0, sizeof(aCol))

aTemp: unknown

aTemp: unknown
i: unknown - int

aCol vector?

aCol: unknown

aCol: unknown - vectoraCol: vector

call compiler

call compiler
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register allocation. In most traditional allocators (espe-

cially the faster ones), a variable is allocated to a single

location for its entire lifetime. If the variable must sur-

vive across a call, then the allocator may require that the

variable be allocated to a stack location for its entire

lifetime rather than a register. In SELF code, many more

calls remain in uncommon-case branches than in com-

mon-case branches, and so a variable cannot be allo-

cated to a register only because of some calls in uncom-

mon branches that the variable must survive. The per-

formance of the common-case branch under such a

register allocation strategy thus is adversely affected by

the mere presence of uncommon branches, even if they

are never executed. The previous SELF compiler

attempted to solve this problem by allocating uses inde-

pendently and allowing a variable to migrate to different

locations during different portions of its lifetime, but

this implementation was very slow. Deferred compila-

tion of uncommon branches allows the new SELF com-

piler to use a simpler, faster register allocator.

In the rare case that the stub for an uncommon branch is

executed, the compiler generates code for the uncom-

mon branch in a separate compiled code object called an

uncommon branch extension. This other routine reuses

the stack frame created for the original common-case

version and returns to the same place where the original

common-case version would have returned to. When

compiling such an uncommon branch extension, the

compiler becomes very conservative. Since its predic-

tions have been wrong for this method once already, it

assumes it does not know much about the probabilities

of the cases within the extension. All uncommon

branches are fully generated in an uncommon branch

extension (uncommon branch stubs are not used). This

prevents recursive uncommon branch stub invocations

which could lead to lengthy compile times. Also the

compiler is biased in favor of saving compile time

rather than generating better code when compiling an

uncommon branch extension.

3.3 Message Splitting

The compiler has finally compiled the first at: mes-

sage, splitting with respect to aCol’s type. It must now

decide whether to merge the two control flow paths back

together or to keep them apart. The two paths have dif-

ferent type information, and knowing this information

may allow the compiler to optimize later messages (this

is particularly true in this example in which there are

three more messages sent to aCol). But keeping the

two paths split apart takes up more compile time and

compiled code space; this extra effort is wasted if the

compiler won’t end up making use of the information

(such as if there were no more messages sent to aCol).

Good heuristics for resolving this problem are central to

achieving good run-time performance and good com-

pile-time performance.

3.3.1 Eager Splitting: Never Merge

One extreme strategy would always keep branches apart

and split everywhere possible (except at loop head

merge nodes); we call this strategy eager splitting.

Eager splitting has the advantages that it promises the

best possible code quality and very simple forward-only

type analysis. Unfortunately, the size of the control flow

graph grows exponentially, and so pure forms of eager

splitting are not practical. We have investigated several

approaches to limiting the “eagerness” of this strategy,

but with only limited success.

3.3.2 Reluctant Splitting and Paths:

Merge Now, but Save the Information

An alternative strategy merges branches as soon as pos-

sible, but saves enough information to remove the

merge later and split if need be. This reluctant splitting

strategy allows the compiler to avoid unnecessary split-

ting.

The previous SELF compiler saved enough information

using merge types (union types that implied that a merge

node created the union) to decide whether or not to split

the control flow graph, but could not split the merged

type binding information into two more specific sets of

type bindings. Hence, it had to reanalyze each of the

split paths every time it split a merge to recalculate the

split type information. Although such reanalysis occa-

sionally revealed an opportunity for further optimiza-

tion of a split path that was not possible in the original

merged path, the backtracking nature of reanalysis

made it very slow.
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Our new type analysis algorithms implemented in the

current SELF compiler do not reanalyze the parts of the

control flow graph modified by splitting. As a result, the

time to do type analysis becomes roughly linear with

respect to the size of the resulting control flow graph. To

split the type information as well as the control flow

graph and avoid reanalysis, the new compiler uses a

more detailed representation of type information based

on path objects. Each path object represents a unique

path through the control flow graph, and type informa-

tion is conditional for particular path objects. At a

branch node each path object splits into two separate

paths, one per branch successor; at a merge node paths

are not recombined (that would defeat the purpose of

paths!) but instead are simply collected together to form

a set of paths in the merge’s successor node. A path

object in reluctant splitting is analogous to a control

flow branch in eager splitting, and consequently reluc-

tant splitting using path objects has the potential for the

same quality of type analysis as eager splitting, but at a

fraction of the cost.

Once merge type information is replaced with per-path

type information, splitting can be couched in terms of

separating the subset of the possible execution paths

that have a particular type binding (or combination of

type bindings, or any other kind of information accumu-

lated during type analysis, such as available expressions

for common subexpression elimination) from those

paths that do not. The new type information along the

two split branches is easily calculated by simply filter-

ing the type information by the appropriate set of path

objects. Splitting is now much faster than the previous

SELF compiler; copying the control flow graph nodes is

relatively inexpensive, and paths relieve the compiler of

the time to reanalyze the split control flow graph.

Of course, the path data structures have an associated

cost in compiler complexity and compilation speed. At

every branch node, the number of path objects doubles

(one path along each outgoing branch for every single

incoming path object), potentially leading to an expo-

nential blow-up of paths that could swamp the compil-

er’s type analysis. To combat this possibility, our com-

piler combines paths that have identical associated type

information, since they will never be split apart. Fortu-

nately, we have not observed exponential blow-up with

this global reluctant splitting strategy for the SELF pro-

grams we have written so far.

To further reduce both overall compilation time and the

risk of exponential blow-up, the SELF compiler nor-

mally uses a more conservative local reluctant splitting

strategy. This approach forcibly combines all paths

together into a single path after any control flow graph

node that generates machine instructions, such as a mes-

sage send node or a branch node but not an assignment

node or a merge node. This has the effect of replacing

each set of path-specific types with a single union type

for the resulting combined path, thereby sacrificing

some precision of type information to keep compilation

fast. In the cases where this early path combining makes

a difference, local reluctant splitting saves up to 30% of

the compile time at a cost of up to 30% extra run time

over global reluctant splitting [Cha91]. Perhaps surpris-

ingly, global reluctant splitting sometimes enables opti-

mizations which significantly shrink the size of the con-

trol flow graph and consequently occasionally compiles

faster (and runs faster) than with local reluctant split-

ting.

Here is our example up through the first merge, this time

with the path information.

call compiler

call compiler

aTemp ← send at: i to aColi integer?

i in [0, sizeof(aCol))?

aTemp ← load aCol[i]

path 1 path 2

i: integer

i: [0, sizeof(aCol))

aTemp: unknown

aTemp: unknown

aCol vector?
aCol: unknown - vectoraCol: vector

| aTemp |

aTemp: nil

aCol: unknown
i: unknown
j: unknown

merge

aCol: unknown - vector
i: unknown
j: unknown

aCol: vector
i: [0, sizeof(aCol))

j: unknown
aTemp: unknown aTemp: unknown
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Now it is time to start using the paths. The compiler

must generate code to send at: j to aCol and put the

result in an anonymous temporary, called t1 here. The

type of aCol after the merge is either a vector (along

path 1) or a non-vector (along path 2). Since the com-

piler keeps these two types separate using paths, it can

do something more intelligent than inserting another

type test to see if aCol is a vector. The compiler can use

the path information to delay the premature merge until

after the at: j message by splitting the merge and the

at: j message into two copies, one along path 1 and

one along path 2. In the path 1 case, aCol is known to

be a vector, and the compiler can inline the at: j just

as it did in the preceding at: i message. Along path 2,

the compiler knows only that aCol is definitely not a

vector, and so must fall back onto generating a full mes-

sage send.

call compiler

call compiler

aTemp ← send at: i to aColi integer?

i in [0, sizeof(aCol))?

aTemp ← load aCol[i]

path 1 path 2

i: integer

i: [0, sizeof(aCol))

aTemp: unknown

aTemp: unknown

aCol vector?
aCol: unknown - vectoraCol: vector

| aTemp |

aTemp: nil

aCol: unknown
i, j: unknown

merge

aCol: unknown - vector
i, j: unknown
aTemp, t1: unknown

aCol: vector
i, j: [0, sizeof(aCol))

call compiler

call compiler

t1 ← send at: j to aColj integer?

j in [0, sizeof(aCol))?

t1 ← load aCol[j]

j: integer

j: [0, sizeof(aCol))

t1: unknown

t1: unknown

aTemp, t1: unknown

Now the compiler is faced with aCol at: i Put: t1.

Again it splits path 1 from path 2, but this time the path

objects uncover a hidden opportunity: the elimination of

the type and bounds check of i along path 1. This extra

type information about i is available because the com-

piler uses paths to recover the types of variables other

than the one being split on. Paths support similar opti-

mizations for the last message, aCol at: j Put:
aTemp, as the next figure shows.

Every redundant type and bounds check has been elim-

inated, no effort has been wasted compiling uncommon

cases, and none has been expended to reanalyze types

after splits. Deferred compilation of uncommon

branches and reluctant splitting based on paths enable

these results.

call compiler

call compiler

aTemp ← send at: i to aColi integer?

i in [0, sizeof(aCol))?

aTemp ← load aCol[i]

path 1 path 2

i: integer

i: [0, sizeof(aCol))

aTemp: unknown

aTemp: unknown

aCol vector?
aCol: unknown - vectoraCol: vector

| aTemp |

aTemp: nil

aCol: unknown
i, j: unknown

merge

aCol: unknown - vector
i, j: unknown
aTemp, t1: unknown

aCol: vector
i, j: [0, sizeof(aCol))

call compiler

call compiler

t1 ← send at: j to aColj integer?

j in [0, sizeof(aCol))?

t1 ← load aCol[j]

j: integer

j: [0, sizeof(aCol))

t1: unknown

t1: unknown

aTemp, t1: unknown

store t1 in aCol[i]

store atemp in aCol[j]

send at: i Put: t1 to aCol

send at: j Put: atemp to aCol
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Both the current SELF compiler and the previous SELF

compiler follow this same plan when compiling loops.

However, they differ in the details of how they answer

the following questions:

• What should the initial type bindings be at the head

of the loop? The previous SELF compiler simply

assumed the same types as the loop entrance. The

current SELF compiler uses early generalization of

constant and subrange types to the enclosing class

types for any variables assigned within the loop. This

usually saves an iteration over the simpler strategy

used in the previous SELF compiler, although it occa-

sionally sacrifices some type information.

• What should the compiler do when it cannot connect

a loop tail to any loop head? The previous SELF

compiler would replace the inadequate version of the

loop body with a new fresh copy, with all split loop

heads merged back together. It then allowed normal

splitting to split the loop head back apart. This

approach had the advantage that loop bodies should

be quite compact, and since the previous SELF

compiler didn’t defer compilation of uncommon

branches it ensured that all uncommon branches got

merged together quickly to save compile time and

compiled-code space. Unfortunately, the compiler

ended up reproducing a lot of analysis to split the

loop bodies apart over and over each iteration, and

the backtracking type analysis was excruciatingly

slow and space-consuming when reanalyzing split

loop bodies. This compile-time performance

problem hindered our ability to debug the compiler

and its voracious appetite for compiler temporary

space prevented us from compiling multiple versions

of loops on any but the smallest benchmarks.

The current SELF compiler avoids these pitfalls by

adopting a simple, fast strategy. When a loop tail

isn’t compatible with any loop head, the compiler

simply “unrolls” the loop for that one loop tail; the

other versions of the loop remain unaffected. This

strategy matches our forward-only type analysis

scheme both in implementation simplicity and

compilation speed. Its drawback is that in some situ-

ations this unrolling strategy uses more compiled

code space, since there is no sharing of code among

separate loop bodies. With deferred compilation of

uncommon branches, this has not been a problem in

practice.

4 Optimizing Loops

The previous example is taken from the inner loop of

the bubblesort benchmark. Our techniques work

especially well to optimize programs containing loops,

frequently compiling multiple versions of a loop, each

version optimized for different combinations of types.

Our type analysis technique for compiling loops is

called iterative type analysis. The compiler first com-

piles the body of the loop assuming some type bindings

at the loop head computed from the types at the loop

entrance (the branch entering the loop from the top). It

then checks to see whether the types computed at the

loop tail are compatible with the loop head; if so it con-

nects the loop tail to the loop head and is done with the

loop. If the types are not compatible, the compiler

attempts to split the loop tail to create a loop tail that is

compatible with a loop head. If splitting won’t help,

then the analysis iterates, compiling a new loop body

assuming more general types.

Compatibility of loop tails with loop heads must be

defined carefully to preserve opportunities for optimiza-

tion. Even though a loop head may have more general

types than the types at a loop tail, and thus would be

acceptable as a connecting loop head, the compiler

avoids connecting a loop tail to any loop head that has

less class type information. For example, if a loop head

has some variable bound to the unknown type, while a

loop tail has the same variable bound to the integer class

type, the compiler will treat the loop head as incompat-

ible; this ensures that the knowledge that the variable is

an integer at the completion of the loop can be exploited

in subsequent iterations. To avoid expending too much

time and space on separate versions of loops, the com-

piler allows a loop tail to have a constant or subrange

type while the loop head only has a class type (of the

same class, of course); this sacrifices only a small

amount of type information but saves a lot of compile

time and compiled-code space.
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the loop to be generated with no type tests or bounds

checks.

At this point, the types at the last loop tail are an exact

match for the second loop head, and so the loop tail can

be connected to the second loop head to finish our

example.

At this point the compiler has ensured that most of the

executions of the loop will be as good as can be. It has

in effect compiled a separate version of the whole loop

for the common case that aCol is a vector, hoisting the

type test out of the subsequent iterations into the first

iteration. All this has been accomplished without costly

backtracking in the type analysis.

loop tail

aCol, i, j: unknown

aCol: vector

aCol: unknown - vector

i, j: [0, sizeof(aCol))

i, j: unknown

path 1

path 2

aTemp ← load aCol[i]

t1 ← load aCol[j]

store t1 in aCol[i]

store aTemp in aCol[j]

second loop head

aCol: vector
i, j: [0, sizeof(aCol))

path 1

loop head

aCol, i, j: unknown

aCol: vector

aCol: unknown - vector

i, j: [0, sizeof(aCol))

i, j: unknown

path 1

path 2

aCol: vector

i, j: [0, sizeof(aCol))

path 1

loop head

first and non-vector
iterations

subsequent
vector iterations

second loop head

We will illustrate these points by embedding our exam-

ple within a simple endless loop; for the sake of simplic-

ity we will ignore the loop counter testing and incre-

menting code that would be part of the real inner loop of

the bubblesort benchmark.

After compiling the loop for the first time, the control

flow graph has one loop head, which could accept any

types, and one loop tail with two paths.

Although the compiler could choose to merely connect

the tail up to the head, that would lose class type infor-

mation on path 1, so the compiler splits path 1 off from

path 2, and connects the loop tail for path 2 back to the

head.

After connecting up the non-vector path, the compiler

must generate code for the remaining path. Along this

path the compiler already knows that aCol is a vector

and that i and j are integer subranges.* This more spe-

cific type information enables a shorter, faster version of

* In a more realistic example, i or j would be assigned within the
loop and the compiler would generalize their types to the integer
class type, so that the version of the loop to be compiled would han-
dle more potential loop tails. In this pedagogical example, neither i
nor j is assigned and so their types are left unchanged.

aCol, i, j: unknown

aCol: vector aCol: unknown - vector

i, j: [0, sizeof(aCol)) i, j: unknown

loop tail

path 1 path 2

loop head

aCol, i, j: unknown

aCol: vector

aCol: unknown - vector

i, j: [0, sizeof(aCol))

i, j: unknown

path 1

path 2

loop head

loop tail
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5 Performance Results

5.1 Methodology

In order to evaluate the performance impact of deferred

compilation of uncommon cases and non-backtracking

type analysis with loop unrolling and path objects, we

compared the performance of three versions of SELF:

• SELF’90 is last year’s SELF system [CU90], lacking

both deferred compilation and non-backtracking type

analysis. Partly because of lengthy compilation

times, this system could not generate multiple copies

of loops.

• SELF’91 (not deferred) is the current system, with

non-backtracking type analysis, but with deferred

compilation disabled. This system can be compared

to SELF’90 to isolate the effect of non-backtracking

type analysis.

• SELF’91 (normal) is the current system including

both deferred compilation and non-backtracking type

analysis. This system can be compared to SELF’91
(not deferred) to isolate the effect of deferred

compilation. Both SELF’91 configurations used

local reluctant splitting.

To measure execution and compilation times for a SELF

benchmark, we first flushed the compiled code cache

and then ran the benchmark 11 times. Consequently, the

first run of the benchmark includes both compilation

and execution, while the remaining 10 runs include only

execution. Therefore, we calculate the execution time

by taking the arithmetic mean of the times for the last 10

runs and calculate compilation time by subtracting the

mean execution time from the time for the first run.

In order to evaluate the practicality of pure object-ori-

ented languages, we standardized the processor, a

lightly-loaded Sun-4/260 SPARC-based workstation,

and measured several other systems:

• The standard Sun C compiler with optimization

enabled (using the -O2 option) established a goal for

run-time performance. The graphs present perfor-

mance relative to optimized C. (Appendix A contains

the raw data.) Compilation time for optimized C

includes the time to read and write files but not the

time to link the resulting .o files together.

• In order to compare our approach to implementing a

pure object-oriented language with competing

approaches, we measured the ParcPlace Smalltalk-80

system (version 2.4) incorporating the Deutsch-

Schiffman techniques [DS84].* As far as we know,

this is the fastest implementation of any other system

in which nearly every operation is performed by

sending a dynamically-dispatched message. Variable

accesses and some low-level control structures do

not use messages in Smalltalk-80, unlike SELF.

• In order to compare our techniques against other

systems supporting generic arithmetic, we also

measured the ORBIT compiler (version 3.1)

[KKR+86, Kra88] for T [RA82, Sla87], a dialect of

Scheme [RC86]. ORBIT is well respected as a good

optimizing compiler for a Scheme-like language.

These data are labeled T/ORBIT (normal). Since

nearly all benchmarks for Lisp-like systems measure

programs that use integer-specific arithmetic, we

also measure a version of the benchmarks using

unsafe integer-specific arithmetic (e.g. fx+ and fx<
in T) and explicit indications to the compiler to inline

certain functions (define-integrable in T).

These data are labeled T/ORBIT (integer only).

Compilation time includes the time to read and write

files but not the time to load the generated file into

the running T system.

In some ways, comparing these systems is like compar-

ing apples to oranges. Our measured SELF system

includes support for message passing at the most basic

levels, user-defined control structures at the most basic

levels, generic arithmetic, robust error-checking primi-

tives, and support for source-level debugging. All these

features are available in the SELF versions we mea-

sured. Neither the C version nor the T versions of the

benchmarks use message passing or user-defined con-

trol structures, neither C nor the integer-specific version

of T support generic arithmetic, neither C nor T com-

piled using ORBIT perform error checking for all prim-

itives, and neither the optimizing C compiler nor T com-

piled using ORBIT support source-level debugging. We

have directed much of our effort toward developing

optimization techniques that coexist with the advan-

tages of the SELF language and environment; program-

mers no longer need to choose between semantics and

performance.

* Compile time and compiled code space measurements for
Smalltalk-80 are unavailable.
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We measured the eight Stanford integer benchmarks

[Hen88] and the Richards operating system simulation

benchmark [Deu88]. The C version of the richards

benchmark is actually written in C++ version 1.2, trans-

lated into C using the standard cfront filter, and then

optimized using the Sun C compiler. Only a few of the

object-oriented features of C++ are used; for example

there is only a single virtual function call (C++ termi-

nology for a message send) in the entire benchmark. In

the charts below we report the average results for seven

small Stanford integer benchmarks and puzzle and

richards separately; this separates the benchmarks

into rough “equivalence classes” based on benchmark

size. Raw data for each benchmark may be found in

Appendix A.

5.2 Results

The graphs to the right show the execution speed, com-

pilation speed, and code density for our benchmarks,

normalized to optimized C. Bigger bars are better.

5.2.1 Non-Backtracking Type Analysis and 

Deferred Compilation of Uncommon Cases

Comparing SELF’90 to SELF’91 (not deferred)

reveals that eliminating backtracking speeds up compi-

lation by a factor of two to four. Run-time performance

and compiled-code space efficiency are roughly compa-

rable for the two systems. Since other aspects of the

SELF compiler and run-time system also changed

between these two systems, it is difficult to make pre-

cise comparisons, but we can conclude that this tech-

nique succeeds at reducing compile times without sig-

nificant penalties for the other metrics.

Comparing the two versions of SELF’91 with and with-

out deferred compilation of uncommon cases reveals

that this technique is an unqualified success, boosting

compilation speed by up to a factor of 10, while simul-

taneously improving both execution performance and

code space efficiency. In conjunction with non-back-

tracking type analysis, deferred compilation improves

compilation speed by more than an order of magnitude

over the previous SELF system.
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5.2.2 Comparing SELF to Other Systems

The current SELF compiler runs the small Stanford inte-

ger benchmarks at well over half the speed of optimized

C and more than five times faster than ParcPlace

Smalltalk-80. The puzzle benchmark runs at over a

quarter the speed of optimized C, again five times faster

than Smalltalk-80. The richards benchmark runs at

over a third the speed of optimized C, four times faster

than Smalltalk-80; this level of performance is achieved

partially because of recent work primarily by Urs

Hölzle on extending the SELF system to speed polymor-

phic messages [HCU91].

These measurements suggest that our techniques would

improve the speed of generic arithmetic even in non-

object-oriented languages. Our SELF system runs

between 50% and 250% faster than “normal” T pro-

grams compiled using the ORBIT compiler, and faster

by 10% to 20% than even hand-tuned integer-specific T

programs. Our results show that such hand-tuning and

restricting of programs is no longer necessary to achieve

good performance, and we would hope that future

benchmarkers no longer resort to such violations of

their languages in search of favorable performance

comparisons.

Compilation speed for the current SELF system is com-

parable to optimized C and the normal version of T and

ORBIT, is about half the speed of the restricted version

of T and ORBIT, and is over twice the speed of C++

(recall that richards is written in C++). Part of

SELF’s compilation speed efficiency is because it does

not read and write intermediate files but instead com-

piles native machine code directly into the same address

space as the compiler. This avoidance of intermediate

files and their accompanying overhead is one of the

advantages of a dynamic compilation-based system.

SELF uses only a third more code space than optimized

C for the small Stanford benchmarks and only twice as

much code space for the richards benchmark. These

results are better than the T/ORBIT combination when

compiling normal T programs. We consider this amount

of space usage to be reasonable, considering the rela-

tively low cost of memory in today’s workstations and

the greater functionality provided by the SELF system

over C and even T. We hope that these measurements

allay any fears that our techniques require unreasonable

amounts of extra space to be effective.

6 Implementation Status

The techniques described in this paper primarily were

implemented in the SELF system in the summer and fall

of 1990. We have been freely distributing this system,

known as SELF Release 1.1, since January 1991. Over

150 sites around the world have a copy of our SELF

implementation, and several medium-sized projects in

SELF have been pursued by people outside our group.

Two compilers are distributed with this system: the lat-

est SELF compiler described in this paper and the origi-

nal SELF compiler described in [CU89] and [CUL89],

which is less optimizing than the latest SELF compiler

but compiles faster. When using the previous SELF

compiler described in [CU90], a user would have to take

a coffee break during a compilation, and many pro-

grams would fail to compile. With paths, the elimina-

tion of backtracking in the compiler’s type analysis, and

deferral of the compilation of uncommon cases, com-

pile times for the latest compiler are merely distracting.

To minimize this distraction, we are investigating adap-

tive recompilation strategies that reserve optimization

for heavily-used methods [HCU91]; a crude form of this

which first compiles methods using the original SELF

compiler and later recompiles often-used methods using

the latest SELF compiler is the standard configuration of

our current system.

7 Previous Work

Other systems perform type inference over programs

without explicit type declarations. ML [MTH90] is a

statically-typed function-oriented language in which the

compiler is able to infer the types of all procedures and

expressions and do static type checking with virtually

no type declarations. Researchers have attempted to

extend type inference to object-oriented languages, with

some success [Wan87, Wan88, Wan89, OB89, Rou90].

These approaches use type systems that describe an

object’s interface or protocol, not the object’s represen-

tation or implementation. This abstract view of an

object’s type is best for flexible polymorphic type-

checking, but provides little information for an optimiz-

ing compiler to speed programs. Our type analysis is

more akin to traditional data flow analysis than type

inference, in that it computes precise, time-varying, rep-

resentation-level types for objects suitable for optimiza-

tions.
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A different approach is taken by the Typed Smalltalk

project [Joh86, JGZ88]. Users must annotate programs

with type declarations for instance variables, class vari-

ables, global variables, and primitives, and then either

run an inferencer to compute the types of methods and

local variables [Gra89, GJ90] (which, like type infer-

ence in ML, provides the compiler with little informa-

tion to support optimizations) or hand-declare selected

methods and local variables with more specific repre-

sentation-level type information. This representation-

level type information is used by the TS optimizing

compiler to perform run-time type casing and message

inlining.

Published performance results for TS indicate that small

Typed Smalltalk programs with explicit user-supplied

type declarations run between five and ten times faster

than Smalltalk programs executed by the Tektronix

Smalltalk interpreter on a Tektronix 4405 68020-based

workstation. Rough calculations based on the speed of

the Deutsch-Schiffman Smalltalk implementation on a

similar machine indicate that the TS optimizing com-

piler runs Typed Smalltalk programs about twice as fast

as the Deutsch-Schiffman system runs comparable

untyped Smalltalk-80 programs. This published result is

still somewhere between two and three times slower

than that achieved by our current SELF compiler, even

though users do not add any declarations to SELF pro-

grams.

Recent unpublished performance results for very small

benchmarks (smaller than any of the benchmarks we

report in this paper) indicate that the current speed of

Typed Smalltalk is close to the speed of our current

SELF system, but unfortunately the current Typed

Smalltalk system does not support generic arithmetic

(integer arithmetic primitives do not check for over-

flow) [McC90]. Much of our work has been directed

towards supporting both good performance and the

complete language semantics; we found generic arith-

metic particularly difficult to support efficiently in our

SELF system and developed deferred compilation of

uncommon branches and path-based splitting partially

in response to this challenge.

8 Conclusions

The current version of the SELF compiler is both effec-

tive and usable. It executes small benchmarks at well

over half the speed of optimized C, five times faster than

the fastest existing implementation of any other pure

object-oriented language with similar features, and with

a compilation speed that is currently comparable to the

optimizing C compiler. This new-found level of perfor-

mance, both run-time and compile-time, hopefully will

convince other language designers and language users

that pure object-oriented languages are now practical.

The key technical contributions over our previous work

on the SELF compiler are careful design and implemen-

tation of splitting strategies that rely only on path-based

non-backtracking type analysis and deferred compila-

tion of uncommon branches. Non-backtracking type

analysis leads to up to an order-of-magnitude improve-

ment in compilation speed by avoiding time-consuming

reanalysis of split branches. Path objects are critical to

realizing this non-backtracking goal without degrading

the quality of the type analysis. Iterative type analysis is

sped up further by eagerly generalizing the types of

assignable local variables before loop analysis and by

simply unrolling new copies of loops for loop tails that

don’t match any loop heads rather than starting the

whole loop analysis over from scratch. Deferred compi-

lation of uncommon branches exploits the skewed exe-

cution frequency distribution by only compiling those

parts of the control flow graph that are likely to be exe-

cuted. This technique increases compilation speed by

nearly an order of magnitude and even improves execu-

tion speed by simplifying the type analysis and easing

the register allocation problem. Deferred compilation

fits in quite well with the on-demand dynamic compila-

tion strategy used in our SELF implementation.

While the current SELF implementation is now usable

and reliable, it still remains slower than desirable. We

are pursuing techniques to reduce compiler pause times

further, hopefully to the point at which SELF users for-

get that the compiler even exists.
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Appendix A Per-Benchmark Raw Data

The SELF’90 run time and compile time data are as

reported in [CU90]. That system was not completely

debugged and could not compile more than one copy of

a loop. The system later was fixed and could compile

more than one version of a loop, but was even slower to

compile than the published system and still could not

compile the larger benchmarks without running out of

compiler temporary memory space. Compile times and

code size data are not available for Smalltalk-80. The C

version of richards is actually written in C++, pre-

processed into C, then compiled with an optimizing C

compiler; this partially accounts for its relatively slow

compilation speed.

bubble 2700 1000 340 320 680 230 200

matrix multiply 4600 2500 900 700 640 600 280

perm 1400 1200 280 200 360 230 110

queens 860 640 240 260 250 180 92

quicksort 1300 1500 650 330 440 270 130

towers 1000 730 310 440 300 350 190

treesort 1100 1300 960 960 1000 930 870

puzzle 16000 4500 3100 3600 3900 2500. 690

richards 7700 9800 8100 3500 3200 2800. 730

bubble 2.7 1.3 22 16 1.8 2.9

matrix multiply 3.0 1.5 30 9.8 3.8 2.9

perm 2.1 1.0 20 5.3 2.2 2.8

queens 3.4 1.6 25 8.2 4.6 3.1

quicksort 3.4 1.7 120 10 2.5 3.0

towers 3.4 3.5 7.6 1.9 1.3 3.7

treesort 3.5 2.4 7.0 6.5 2.1 3.9

puzzle 24 9.1 360 220 23 9.1

richards 12 14 36 7.7 5.4 13

bubble 4.7 1.9 5.9 21 2.2 2.7

matrix multiply 5.4 2.1 8.3 12 4.0 2.5

perm 3.6 1.3 7.1 7.9 2.9 2.4

queens 5.2 1.7 8.0 12 5.0 2.5

quicksort 5.8 2.7 10 20 3.6 2.8

towers 6.5 3.5 7.4 5.3 3.3 3.1

treesort 5.8 3.6 7.2 12 3.6 3.3

puzzle 32 9.9 41 210 21 5.0

richards 18 18 26 17 12 6.1
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